Question 10) When the rms voltage V_L , V_C and V_R are measured respectively across the inductor L, the capacitor C and the resistor R in a series LCR circuit connected to an AC source, it is found that the ratio V_L : V_C : V_R = 1: 2: 3. If the rms voltage of the AC sources is 100 V, The V_R is close to

- (A) 50 V
- (B) 70 V
- (C) 90 V
- (D) 100 V

Solution:

Given,

$$\Rightarrow$$
 V_R = 3K, V_L = K, V_C = 2K

We know,

$$V=\sqrt{V_R^2+(V_L-V_C)^2}$$

$$100=\sqrt{9K^2+K^2}$$

100 = √10 K

K =100/√10

 $V_R = 3K = (3 \times 100)/\sqrt{10}$

= 94.86 volts

So, V_R is close to 90 V