Question 10) When the rms voltage V_L , V_C and V_R are measured respectively across the inductor L, the capacitor C and the resistor R in a series LCR circuit connected to an AC source, it is found that the ratio V_L : V_C : V_R = 1: 2: 3. If the rms voltage of the AC sources is 100 V, The V_R is close to - (A) 50 V - (B) 70 V - (C) 90 V - (D) 100 V ## Solution: Given, $$\Rightarrow$$ V_R = 3K, V_L = K, V_C = 2K We know, $$V=\sqrt{V_R^2+(V_L-V_C)^2}$$ $$100=\sqrt{9K^2+K^2}$$ 100 = √10 K K =100/√10 $V_R = 3K = (3 \times 100)/\sqrt{10}$ = 94.86 volts So, V_R is close to 90 V